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Abstract

A generalization of previous treatments

of quantum phasem is presented. Restric-
tions on the class of reaﬁzable phase statis-
tics are thereby removed, thus permitting
“phase wavefunction collapse” (and other
advantages). This is accomplished by ex-
citing the auxilary mode of the measure-
ment apparatus in a time-reversed fashion.
The mathematical properties of this aux-
ilary mode are studied in the hope that
they will lead to an identification of a
physical apparatus which can realize the
quantum phase measurement.

1. The SG phase statistics

A satisfactory description of the phase
of the quantum harmonic oscillator has
recently been achieved by considering
the realizable measurement[!l of the non-
Hermitian Susskind-Glogower (SG) phase

operator!?

ed = (a+1)""%. (1)
Although it is not Hermitian, the SG
operator does correspond to a realizable
quantum measurement. It’s measure-
ment statistics, however, can not be cal-
culated from the familiar Hermitian oper-
ator rules (e.g. moments calculated via

(¥|(e®)*|y),k = 1,2,... do not corre-
spond to the SG operator’s realizable mea-
surement statistics). We have demon-
strated a variety of ways in which the mea-
surement statistics of the SG operator can
be accessed [1M3). Perhaps the simplest of
these is to form the phase wavefunction

¥(¢) = (¢l¥), (2)

from which the phase probability distri-
bution, p(¢) = |¥(¢)[>/2, and it’s associ-
ated moments follow directly. This procee-
dure is justified formally by the fact that
the infinite energy eigenkets of the SG op-

erator
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6)= Y e™®In)
n=0
resolve the identity, i.e. 1 = [, $2|6)(¢l.
This permits the extremely useful phase

representation of an arbitrary quantum
state:
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) = (¢l¥)#)s (4)

analogous to the familiar number repre-
sentation of a state:
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The number-ket expansion coeflicients,
¥n = (n|Y), may be viewed as a wave-
function in discrete n-space. The Fourier
transforn relationship of the number and
phase wavefunctions

$(¢)= D e (6)
n=0
” d -
wo= [ Luere

demonstrates the complementarity of pho-
ton number and quantum phase.

Position and momentum are famil-
jar examples of complementary quanti-
ties, whose wavefunction representations,
¥(z) = (z|¢) and &(p) = (pl¥), are
also related via Fourier transform. -
deed, several relations among v, and ¥(¢)
are reminiscient of those encountered in
Schrodinger’s wave mechanics. Analogous
to the position representation of the mo-
mentum operator, p — —ihad;, for exam-
ple, we have a phase representation of the
number operator, it — ij‘g, viz:

($l(R)*lv) =
T do , . d
37 V(@) ¥(9)

-

(8)
(9)

177

PRECEDING PAGE BLANK NOT FILMED



(where k = 0,1,2...). These relations yield
the correct form of the number/phase un-

certainty principlel3):
(An)(A¢") 2 11~ 2ep(m))%  (10)

Since we are dealing with a single har-
monic oscillator (of frequency w), phase
is related to time (¢ = wt) in a mod-2x
sense, and number is directly related to en-
ergy (* = H/hw — 1/2). In this sense, the
above constitutes a rigorous energy/time
uncertainty principle for the quantum har-
monic oscillator.

The class of realizable SG phase statis-
tics, however, is restricted (by a Paley-
Wiener theorem) due to the fact that ¥(¢)
is a one-sided Fourier series, i.e. this re-
striction stems from the absence of “nega-
tive number states” (4, = 0 ¥n < 0). One
aspect of this restriction is that y(¢) is
prohibited from identicaly vanishing over
anon-zero interval — thus, delta-functions
in phase are not allowed. In as much as we
may desire a “wavefunction collapse” view
of a phase measurement, the SG statis-
tics appear to be incomplete. This dilema,
however, can be resolved by generalizing
an alternate route (the product space for-
malism) to the SG statistics.

Fundamental to the realizable measure-
ment of any non-Hermitian operator is
the existance of an auxilary noise source.
Zero-point fluctuations from this auxi-
lary mode prevent a simultaneous, per-
fectly precise, measurement of the non-
commuting real and imaginary parts of the
non-Hermitian operator (so that the un-
certainty principle is not violated). We
can study the interaction of our original
system of interest (Hilbert space H,) with
this auxilary system (Hilbert space ,)
by working in the product space H =
H, ® Ho. The ertension of the SG op-

erator onto X is 13
F=(9),el,+7.0@®), @11)

where ¥V = [0}(0]. This extension
has eigenkets (of non-zero eigenvalue),

Ti¢)' = €4|¢)’, given by

16) = [0)0)a + 3 e™9m)0)e (12)

n,=1
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+ z e""¢%|0),Ing)q.

ne=1

(13)

These reside on a subset, X', of X which is
defined by the property n,n, = 0. When
the auxilary mode is in the vacuum state

gn. = 0), the ¥ measurement yields the
G statistics and their attendant Paley-
Wiener restriction.

2. Beyond the SG statistics
We can go beyond the SG statistics by

exciting the auxilary mode to create an
arbitrary state on M :

Iw)' = E ¢nov°'nl>l|0>a (14)
n,=0

+ i wo-"-lo)llna)a- (15)
ne=1

For simplicity, let N = n, — n,, ¢y =
¥no (YN 2 0), and ¢n = o _n (VN <
0). The generalized phase wavefunction,

Y@= eley = S uwemNe, (16)

N=-o

is a two-sided Fourier series. The the
Paley-Wiener restriction is removed and
¥'(4) can “collapse” to a delta-function.
The fact that the class of y'(¢) is more
general than (and includes) the class of
¥(¢) should prove useful for various opti-

mizations. Indeed, Shapirol*! has pointed
out that error-free communication could
in principle be achieved by exploiting the
newly aquired generality described herein.

Provided that niether of our two modes
is purely in the vacuum state, the ex-
citation which creates a state on H' is
not arbitrary in that the n,n, = 0 prop-
erty creates an entanglement. Thus, in
general, the original system and auxilary
modes are not statistically independent
on M, i.e. [¥) # [¥)sl¥a)a. Denot-
ing the prohability that a measurement
of 71, yields the outcome n by |y?|?, we
see that |y1]2 = [, 0[2 (Vn > 1), whereas

%317 = I¥0,01 + T72; [¥g,nl? (similarly for
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|¥a]2). In spite of the lack of statistical
independence, we can therefore assign any
individual probability distributions for n,
and n, that we wish, provided that

lool? = (lwgl? + [¥§12 - 1) > 0

is satisfied.

(17)

The auxilary mode can be interpreted
as a time-reversed mode in the following
sense. Consider the case of the auxilary
mode being in the vacuum state (n, = 0).
Denote the initial state by |i)’. The
state (in the Schrodinger picture) after
time evolution of an amount 7 is

‘d’r)' = e—iﬁ,wrlwoy, (18)

so that the relation of the phase represen-
tations of the initial and delayed states is
simply

Po(@) = Po(¢ + wT) (nga =0).  (19)

Now consider the case of the original sys-
tem being in the vacuum state (n, = 0).
The Schrodinger picture of the delayed
version of an initial state |tg)’ is

|4, = €7 e T o). (20)

The initial and delayed phase representa-
tions for this case are related by

¥o(d) = Yold —wr) (m, =0). (21

Thus the two modes are time-reversed in
that, under time evolution, the n, > 1
portion of the generalized phase wavefunc-
tion “moves backwards” with respect to
the n, > 1 portion.

Consistent with the time-reversal prop-
erty, the auxilary mode serves the topo-
logical role of a “negative energy” mode in
Hilbert space. The SG operator is a pure
lowering operator which stops at the vac-
numn:

edn)=|n-1) (n>1) (22)

(0) = 0. (23)
It cannot lower below the vacuum since we
have not allowed negative number (nega-
tive energy) states for the quantum har-
monic oscillator. It’s extension, Y, how-
ever, lowers the original system mode
number

F1ny),10)e = In,—1),10) (7, > 1), (24)

then continues through the vacuum

?|0)!l0>¢1 = |O>a|1)a, (25)

and raises the auxilary mode number

¥10),Ina)a = 10)slna + 1)a- (26)
Topologicaly, it is as if ¥ continues to lower
below the vacuum into the auxilary (“neg-
ative energy”) mode. The visualization of
this behavioral aspect can be facilitated

by simply relabeling the H' number states
according to the value of N = n, — n,.

The auxilary mode has to be an irrevo-
cable part of the physical apparatus which
realizes the quantum phase measurement
(so that the uncertainty principle is sat-
isfied and so that the phase wavefunction
can collapse). All of the aforementioned
mathematical properties must be physi-
caly realized in the measurement appara-
tus. These restrictions should prove useful
in determining an apparatus which will re-
alize the quantum phase measurement.
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